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Surface manifestations of turbulent flow 
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The surface of a turbulent, open-channel flow is often characterized by smooth areas of 
upwelling, each surrounded by a zone of downwelling marked by short steep waves. 
The dynamics of short waves on such a downwelling region are investigated and some 
laboratory experiments are proposed. Assuming that the horizontal strain rate D is 
locally constant, a simple expression is derived for the amplitude a of the short 
capillary-gravity waves, and hence also for the spectrum of the surface slopes. 

1. Introduction 
The flow in rivers and tidal channels, as well as in ships’ wakes, is usually turbulent, 

and the most immediate way of detecting subsurface eddies is by the effects that they 
produce at the upper surface of the fluid. The question arises: what is the nature of the 
surface indications that we can detect by eye or by other kinds of remote sensing? 
Further, what can we infer from such observations concerning the nature of the 
subsurface flow? 

These questions were prompted by a visit which the author made to the 
Skookumchuck Narrows in British Columbia in order to see the strong tidal current 
there, which at spring tides attains a speed of about 20 km h-l (5.6 m s-’); see King 
(1956). A video picture of the flow is reproduced in figure l.t One feature frequently 
observed was the occurrence of a broad patch of relatively smooth water spreading 
outwards from a line, or a centre, of upwelling. Near the middle of this smooth patch 
there often appeared a secondary upwelling, whose boundaries were marked by a ring 
of short capillary waves, as in figure 2. The area of the secondary upwelling gradually 
grew and sometimes a daisy-chain of small vortices could be seen around the 
boundary. This suggested the breakup of a vortex sheet, as if the fluid in the secondary 
upwelling was rotating relative to the first. Meanwhile the whole pattern was 
convected downstream. 

In answer to the first question above, it appears that the surface indications of the 
flow are of two kinds: short capillary waves, which are visible through their relatively 
steep slopes ; and vortices, which by centrifugal force produce small circular 
indentations. 

The observed patterns just described have been attributed by Allen (1985) to ‘ kolks’ 
beneath the surface, as described by Mathes (1947). These are organized turbulent 
structures generated at the lower boundary of the flow. The surface patterns themselves 
are referred to as ‘kolk boils’ (see Nezu & Nakagawa 1993). 

The purpose of the present paper, which was stimulated by these observations, is to 

t A similar though less striking photograph of a tidal current in the Severn Estuary is shown in 
figure 9.1 of Nezu & Nakagawa (1993). 
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FIGIJRE 1 .  View of the tidal current in the Skookumchuck Narrows, showing the growth of an 

upwelling zone (indicated by arrows) in a larger smooth area, at two successive instants. 
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FIGURE 2. Schematic of ripplea and eddies at the edge of an upwelling zone 
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determine the analytic form of the ripples seen at the boundary of an upwelling zone. 
We begin in $ 2  with a discussion of the dynamics of short waves on a non-uniform 
current, a topic considered previously by Longuet-Higgins & Stewart (1964), 
Bretherton & Garrett (1968), Shyu & Phillips (1990) and most recently Trulsen & Mei 
(1993). For two-dimensional waves we derive the simple equation (2.12) governing the 
action density A .  Here U(x) denotes the current at the surface, cg is the group velocity 
and v the kinematic viscosity. In $ 3  we see that if the strain rate ?U/C?x is locally 
constant, then the action density A is given by a very simple expression. In $4 we 
describe the kinematics of the wave pattern, including the phenomenon of double 
reflection also discovered by Trulsen & Mei (1993). Some special cases, with possible 
experimental tests, are treated in $95-8. In $8 we derive a time-deyendent solution. 
Lastly in $9 we point out that from the expression for the action density we can infer 
a form for the spectral density S(k) of the surface slope which while depending on the 
strain rate 52 is independent of the parameter cro (the radian frequency of the waves 
relative to a stationary observer). This expression may be of use in estimating the radar 
backscatter from a turbulent current, or inferring the scale of the turbulence from 
measurements of the backscatter. 

2. Basic equations 
Consider a train of surface waves of local amplitude a and wavenumber k riding on 

a steady, non-uniform current of speed U, as shown in figure 3. The current is positive 
to the right; the waves travel with speed c to the right. The current is assumed to vary 
gradually in the x-direction, in the sense that c?U/c?x 4 cr where IT is the radian 
frequency of the waves, relative to an observer moving with speed U. We shall suppose 
that cr is given by the dispersion relation for inviscid, or weakly damped, 
capillary-gravity waves, namely 

CT’ = gk + (T /p )  k3, (2.1) 

where g ,  T and p denote gravity, surface tension and density respectively. It will be 
convenient to choose units SO that 

g = T = p = l .  (2.2) 

First we consider quasi-steady conditions in which a, k and cr are independent of the 
time t. Then we have two basic conservation equations: (i) the conservation of phase, 
given by 

where c = c / k ,  the local phase speed, and (ii) the conservation of energy, given by 

a + k U =  k(U+c) = cr,,, constant, (2.3) 

2 aU 
2x c ‘ X  
- [E( u+ c,)] + s,, T+ 41k2E = 0 

(see for example Longuet-Higgins & Stewart 1964). Here E denotes the local energy 
density of the waves: 

cy denotes the group velocity daldk, given by 

E = +a2( 1 + k2) ,  (2.5) 
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FIGURE 3. Waves on a non-uniform current U. 
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and S,, is the radiation stress, given by 

The last term on the left of (2.4) represents the internal viscous dissipation (see Lamb 
1932, p. 624), 1’ being the kinematic viscosity. It is assumed that the waves are in 
relatively decp water. Equation (2.4) can be rewritten in terms of the action density 

A = E/a .  (2.81 

On multiplying each side by l/rr  equation (2.4) becomes 

But 
1 2a 1 c?k 

aB ax a2 gax’ 
c -  

since c, = dcr/dk. By differentiating (2.3) we find also 

(2.10) 

(2.11) 

Hence the second and third terms in (2.9) cancel and we have simply 

(2.12) 
c? 

-[A(U+c,)] +4yk2A = 0, 
ax 

see Shyu & Phillips (1990). 
The original version of (2.12) (Garrett 1967; Bretherton & Garrett 1968) did not 

include the dissipation term. We have derived (2.12) in this way to show how it follows 
from the more familiar energy equation. Shyu & Phillips (1990) give a slightly longer 
proof. 

3. Solution of equation (2.12): uniform strain rate 
In general we can write 

A(U+c,)  = B, 
representing the action flux. Then (2.12) becomes 

4vk2 - - - -- 
XI 
ax U + C ,  
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FICIJRE 4. Flow in the neighbourhood of a convergence. 

whence on integration 

B = exp[ - / E d . ]  u+ cg 

But from (2.11) we have 
dk - - -~ dx 

U+c,  kaU/c?x' 
Therefore (3.3) becomes 

B = exp [ 1- 4vk dk] . 
a u/ax 

Now in the neighbourhood of a stagnation point, where there is a convergence of the 
surface current (see figure 4) we may write 

= -Q, 
au u=-Qx, - 
c7X 

where Q is a positive constant. Then (3.5) becomes 
B = B e-2vk'llSZ 

0 > 

where Bo is an arbitrary constant. Hence 

and 

The wave amplitude a is then found from (2.5) to be 
1/2 

a = (&) 

(3.6) 

(3.7) 

(3-9) 

(3.10) 

4. Nature of the solution 

becomes 
With the assumption of a linear strain rate, the equation of phase conservation (2.3) 

CT = co+Oxk.  (4- 1) 
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FIGURE 5. Diagram for obtaining the roots of equation (4.3) in the (k,  cr)-plane. 

Combining this with the dispersion relation 

we obtain a cubic equation 
cr2 = k + k 3  

k3 + k = (Qxk + 
to solve for k as a function of x. This has in general either one real root or three. 
Exceptionally, two of the roots may coincide, or possibly all three; compare for 
example Basovich & Talanov (1977). Shyu & Phillips (1990), Trulsen & Mei (1993). 

Figure 5 shows the situation in the (k ,  r)-plane. By (4.2) the wavenumber k is non- 
negative. For given x, (4.1) represents a straight line 1 in the (k ,  a)-plane, passing 
through the fixed point (0, go) on the a-axis and making an angle 8 = arctan (52.u) with 
the k-axis. This meets the dispersion curve (4.2) at either one or three points, generally, 
depending on the values of no and 0 (or x). 

Suppose first that vo and x are positive. Let the tangent to the dispersion curve at 
the point of inflexion I meet the cr-axis in the point (0, rC), say. If 0 < cr,, < crc, and x 
> 0, then the line 1 meets the dispersion curve at three distinct points (l), (2), (3) but 

only if 8 lies in a certain range bounded by the tangents at P and Q. If 1 passes through 
P, say, then the two roots (1) and (2) coincide at P, and if 1 passes through Q the roots 
(2) and (3) coincide at Q. 
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FIGURE 6 .  Diagram of the wave system in the (x, k)-plane corrcsponding to figure 5 ,  when go = 0.1. 
The wave systems (l), (2), (3) correspond to the intersections (l), (2), (3) in figure 5. Arrows denote 
the direction of action flux. 

When cru = rc, then P and Q come to I ,  and all three roots alqo coincide at I. On the 
other hand if x and 0 are negative, there are either three roots of (4.3) or one, according 
as I lies inside or outside a sector bounded by the tangents at R and 0 (the latter is the 
negative cr-axis). 

The situation in the (x,k)-plane is shown diagrammatically in figure 6. The points 
xp, xQ, xR on the x-axis correspond to P, Q and R of figure 5. When x > xI, there is only 
one wave system (3). This is a strongly capillary wave, with high wavenumber k.  The 
flux of energy E(U+c, )  is positive, since cq, which is given by the gradient of the 
tangent to the dispersion curve, is greater than Szx, the gradient of the line 1. 

When xq < x < xp there are three distinct systems of waves. In (1) and (3) the flux 
is positive, and in (2) it is negative. When xR < x < xQ there is only one wave system 
namely ( l ) ,  with small wavenumber k .  It is a gravity-type wave and the flux is positive. 

When x < xR two other wave systems appear which we call (2)’ and (3)’, The action 
fluxes are negative and positive respectively. These systems are disconnected 
energetically from system (1). 

Each of the critical points xp,xg and xR is clearly a caustic, at which two distinct 
wave systems fuse. In the neighbourhood of such points (U+ cq) is small, making both 
A and E large, in our approximation. However, a higher-order theory such as was used 
by Smith (1975) is then applicable. In this the wave amplitudes are locally described by 
Airy functions, and remain finite. 

It is clear that as cr,, approaches crc from below, the two points xp and xy come 
together to form a higher-order singularity. The wave system (2) is then extinguished. 
Thirdly when cro > crc the wave system (3) merges continuously into (1) without any 
singularity. However, the caustic at .xB remains. 
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0.0 
0.1 
0.2 
0.2467 
0.3 
0.5 
0.7 
1 .o 

TABLE 1 

f ax,  Qx4! QXP 

(Hz) 
0.000 -- 1.41 1.41 00 

0.948 -1.51 1.31 2.50 
1.896 - 1.59 1.17 1.28 
2.339 - 1.63 1.09 1.09 

- 2.844 - I .67 
4.740 - 1.80 
6.636 -1.92 
9.480 -2.08 - - 

Representative frequencies and velocities 

- 

- - 

- - 

We have so far supposed oo > 0, with x or 8 either positive or negative. If o0 < 0, 
the discussion proceeds in a precisely similar way by symmetry, since the dispersion 
curve is its own reflection in the o-axis. 

Note that our figure 6 is similar to figure 4 of Trulsen & Mei (1993), except that they 
did not include the curves corresponding to negative frequencies. In c.g.s. units in 
which g = 98 1 and T = 75, the frequency J’ (in Hz) corresponding to a dimensionless 
radian frequency v0 is given by 

.f= 6J’42 = 9 . 4 8 0 ~ ~ .  (4.4) 

For convenience, some representative values are given in table 1 

5. The special case oo = 0 
Two special cases are of interest. The first is when cro = 0, that is, the frequency 

k(U+ c) relative to a stationary observer is zero, so that the wave pattern is stationary. 
The situation in the (k,o)-plane is shown in figure 7. The figure is symmetric with 
respect to 0 or o. Hence in the (x,k)-plane (figure 8) we have symmetry about x = 0. 
Since P tends to 0 in figure 7, OP becomes vertical and so in figure 8, xF tends to 
infinity. Equation (4.3) has one root k = 0 which we may ignore, along with wave 
system (1). The remaining two roots of (4.3) are given by 

k2-(52x)Zk+ 1 = 0. 

k = ;(sZx)z * [$(52x)4 - l ] l ’ Z .  

$2x)4 3 1 

x = f d2Ii-2 

x = +(4gT)1’4/52. 

Hence 

The roots are real only if 

so there are two caustics given by 

or in dimensional units 

In figure 7 these correspond to the two tangents 1 from 0 to the curve at Q and R, 
which correspond to minima of the phase speed 1cI. 

In other words there is a calm patch in the central zone of figure 8. Outside this zone 
there are two systems of waves: (2) and (3) on the right and (2)’ and (3)’ on the left. 
On each side, the action flux outwards in the capillary-type wave exactly balances the 
flux inwards from the gravity-type wave, apart from viscous damping. Because the 
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FIGURE 7. Situation in the (k ,  a)-plane when cr,, = 0. 

waves in the calm zone 1x1 < y‘2Q-l are vanishingly small (a being small, by 
assumption) the two systems of waves, on the left and on the right respectively, are 
effectively decoupled and independent of one another; one system may exist in the 
absence of the other. 

In practice the above picture may have to be modified. For, since the wave amplitude 
is greatest at a caustic, wave breaking will most likely occur there, resulting in a loss 
of energy and of wave action. However, if the incoming gravity wave is of very low 
amplitude it may not break, or may break only partially. Being of low amplitude and 
relatively large wavelength it will have a very low steepness and so may be hardly 
visible to the eye, whereas the ‘reflected’ capillary wave will be much steeper, and hence 
may be clearly visible. The capillary wave will therefore appear to ‘spring out of 
nothing’ at a point slightly beyond the wave caustic, i.e. x = ~ ’ 2 / 5 2 + e ,  e > 0. In fact 
such a phenomenon may be expected for all values of go in the range 0 < go < rC. 

6. Experimental tests 
In a flume of running water, let a vertical plane barrier be inserted through the 

surface to a depth H ,  as in figure 9. The water velocity before insertion of the barrier 
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FIGURE 8. Wave systems in the (x,k)-plane when a, = 0. 

is made to somewhat exceed cmin. A two-dimensional object, such as a circular cylinder 
placed below the surface, will give rise to a train of gravity waves downstream. The 
waves will be stationary relative to the obstacle, so corresponding to the case go = 0. 
As the wave energy travels horizontally to the left, it will enter a region of 
decreasing surface current. It will be reflected near where the speed of the current 
equals 23 cm s-l. Wave breaking at the caustic may possibly be avoided by adjusting 
the depth D of the cylinder to make the wave amplitude sufficiently small. 

The distance of the caustic from the vertical barrier will depend on the depth of 
submergence H of the barrier. For small values of H the deceleration of the surface 
velocity will take place over a horizontal distance of the same order as H.  As H 
increases we may expect the caustic to move further away from the barrier. In practice, 
the reflected train of capillary waves will shed a rectified vorticity (see Longuet-Higgins 
1992) which will be convected backwards with the flow. This will create a turbulent 
circulation between the caustic and the vertical barrier OA, as indicated in figure 9. The 
phenomenon has been called a ‘capillary bore’ (Longuet-Higgins 1992). This however 
should not much affect the flow field outside the roller. 

Because of the reduction in the potential flow towards the wall, we may expect the 
free surface to be slightly elevated above the undisturbed level, From Bernoulli’s 
equation we expect the vertical displacement 7 to be given by 

which has the form of a parabola. By hypothesis, 7 is small. 
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FIGURE 9. Arrangement for first experiment. 

FIGURE 10. Situation in the (k, +plane when u,, = uc. 

If from the side of a ship moving at a slow speed (exceeding 23 cm s-l) in still water 
-perhaps in a ship towing tank-a plane vertical barrier is inserted through the 
surface, then may expect to see a similar phenomenon; also just ahead of a moving ship 
with a blunt prow. 
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FIGURE 11. Wave systems in the (x, k)-plane when go = CT~. 

The formation of a capillary roller in this situation is suggested in figure l(b) of 
Longuet-Higgins (1973), based on an observation made from a punt on the river Cam. 

7. The critical case CT,, = vc 
The second interesting special case is when go is equal to the critical frequency gC; 

see figures 10 and 11. In figure 10, when x > 0, there is only one possible root k,  and 
so in figure 11 there is only one possible wave train at each point. This special case is 
discussed by Trulsen & Mei (1993). 

The value of vc is easily found by calculating the minimum positive group velocity: 

C =-= dg  1+3k2 
dk 2(k+k3)l”‘ 

This occurs when 
3 

hence 

Also 

L 
k2 = --1 = 0.1547, 

2;’ 3 

k =0.3933, CT = (7.3) 

c = 1.7134, cg = 1.0863. (7.4) 
Hence also 

CT,, = CT - kc, = 0.2467. (7.5) 
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FIGURE 12. Arrangement for second experiment. 

Thus the phase speed is greater and the group velocity less than the value ~ ' 2  at k = 1. 
In this case x p  may be found from the fact that at the point of inflection = da/dk, 
hence 

Thus xp is closer to the origin 0 than in the previous example (CT, = 0). 
From figure 11 we see that, in contrast to the previous case, the capillary wave ( 3 )  

cannot be excited by a gravity wave (2) upstream of the caustic. On the other hand it 
can be excited by the gravity wave (1) from a point x anywhere to the left of .xp.  

An experimental test of this conclusion might be conducted on the lines of the 
experiment in the previous Section, provided that the cylindrical obstacle is removed 
and replaced by a plunger at the left-hand wall, operating at a frequency w = a,; see 
figure 12. Although there may be some residual disturbance at the previous caustic, the 
caustic at the new value of xcp should be easily observable, since it lies to the left of its 
previous position. 

x P  = 1.0S63OP'. (7.6) 

8. Time-dependent wave trains 
The general equation (2.4) for the energy E can easily be generalized to time- 

dependent wave trains by adding an extra term aE/at to the left-hand side (see 
Longuet-Higgins & Stewart 1964). This results in the addition of a term ?A/c?t to (2.12). 
We confine attention here to the case when E and A are proportional to e@, where /? 
is independent of x and t. Then the conservation of phase (equation (2.3)) still applies. 
Since aA/at  may be replaced everywhere by PA, equation (2.4) remains valid provided 
that the factor 4vk2 is replaced by (4vk2+/?). Then (3.5) becomes 

B = exp 

and on substituting c7U/ax = -52 we obtain 
B = B, kPl" e -2~kZ/a  

Here B, contains the time factor ePt. Hence we obtain a whole new class of solutions. 
There is no obvious reason why such motions should not occur. However if ,I3 > 0 

they would presumably grow until wave breaking or other nonlinear effects took place 
(the extra energy being supplied, as always, by the contracting current via the radiation 
stress). If /3 < 0 the waves would eventually die out. The chief reason for emphasizing 
the case ,8 = 0 is that this is most likely to be observed in practice. 
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FIGURE 13. A plot of the slope spectrum S*(k) as given by equation (9.5) 
for various values of the strain rate a. 

9. The energy spectrum 
To find the overall energy spectrum of a wave train of varying amplitude and 

wavenumber we need to take account of the horizontal extent (Ax)  of the surface over 
which the wave train has a wavenumber between k and (k+Ak),  say. This leads to the 
conclusion that the wavenumber spectrum E*(k) is related to the energy density E of 
$62 and 3 by 

E* = El$l. 

But from (2.11) we have 
dk k X J / a x  - kSZ - 
dx u+c, U+c,' 

So combining (9.1) and (9.2) with (3.9) we obtain 

(9.1) 

This very interesting result shows that the energy spectrum is independent of the 
parameter co (which enters the relation between x and k )  and depends only on 52 and 
v). Now the energy density E, as defined by (2.5), is the sum of contributions from the 
height spectrum and from the slope spectrum. These are represented by the two terms 
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u2 and a2k2 in (2.5). If we wish to consider the slope spectrum S* of the surface of itself, 
then we must multiply E* by k2/(1 +k2) .  Thus from (9.3) we have 

BO crk e-2vk2/62. S*(k) = -- 
52 l + k 2  

Since CT is given in terms of k by the dispersion relation (4.2) this becomes 

S*(k) = - B, k3J2 e-2uk’/lsz 

52 (1 + k2)1/2 

(9.4) 

(9.5) 

In figure 13, S*(k) is plotted against k for representative values of the strain rate 52. 
Supposing for a moment that 52 were constant, equation (9.5) would appear to 

describe the wavenumber spectrum for surface waves near a typical downwelling point. 
Some caution is necessary because of the energy loss by wave breaking, particularly at 
a caustic. 

The present work has been supported by the Office of Naval Research under 
Contract N00014-94- 1-0008. A preliminary account was presented at the ONR 
Workshop on Free-surface Turbulence at Pasadena, CA, in March 1995. 
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